
      

 

 

White Paper by Intel Corporation and IBM Corporation 

 

 

 

 

 

 

 

 

Trusted Platforms 
UEFI, PI and TCG-based firmware 
 

 

 

 

 

 

 

 

 

 

 
Vincent J. Zimmer 

Intel Corporation 

 

Shiva R. Dasari 

Sean P. Brogan  

IBM 

 

September 2009 



 ii 

Executive Summary 
This document provides an overview of the interactions of the Trusted Computing Group (TCG) 

[TCG Overview], the firmware standards work within the Unified Extensible Firmware Interface 

(UEFI) Forum, and implementation practices of UEFI PI-based [UEFI Book][UEFI Shell 

Book][UEFI Overview] implementations.  In addition, this paper will provide some use-cases 

and implementation examples of this technology in addition to the industry threats that motivate 

the design of this class of technology.   

 

This paper is mainly intended for Hardware, firmware, software, and BIOS engineers.   But 

beyond this audience, some of the information in this paper will be valuable for IT decision 

makers, marketing, and other parties. 

 

The goal of the paper is to take away an understanding of the motivations behind trusted 

platform design, the terminology of trust, how to navigate the Trusted Computing Group set of 

specifications and technology that relate to platform, impact on platform firmware and UEFI, 

instances of deployment in the market, and some future possible directions for hardware and 

firmware. 
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Overview 

This section will describe an overview of the ensuing chapters. 

 

Description of each chapter 
The section on “Problems to Solve” will give an overview of the attacks and industry 

concerns that motivate the design and deployment of trusted computing. 

 

After the problem statement has been described, “Trusted Computing Elements” will 

provide taxonomy of the technology elements and the goals that are used to address many 

of the concerns brought up in the “Problems to Solve” chapter. 

 

The next chapter provides an overview of platform firmware, including conventional 

PC/AT BIOS and UEFI-based implementations.     

 

After the description of BIOS, the implementation of platform firmware and trusted 

computing technology is treated in the chapter “Platform firmware and trusted computing 

technology.” 

 

Following the trusted platform firmware discussions, some operating system use-cases of 

the preceding technology will be described in “OS Usages of SRTM.” 

 

Given the above technology descriptions and use-cases, a chapter on an actual platform 

that implements many of these ingredients can be found in “Platform Perspective – 

Putting it all together.” 

 

After the platform example is shown, the topic of best practices and assurance around 

platform and firmware design will be discussed in “Some best practices for robust 

platform construction.”    This will provide insight on „how‟ to implement the various 

features and standards discussed earlier. 

 

Once the problems, technology, implementation instances and guidelines of today‟s 

practices have been reviewed, the following chapter will provide some glimpse into the 

future via “Evolution of platform trust.”   This will include futures in both the trusted 

computing and UEFI space. 

 

The conclusion will provide a recap of some key points and summary of the items treated 

in the preceding chapters. 

 

Summary 
This chapter has provided a roadmap to reviewing the successive sections of this paper. 
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Problems to solve 

In this initial chapter on “Problems to Solve,” some motivation for the development of 

platform trust is covered.   Specifically, the many concerns found in the industry around 

security are discussed. 

 

Problem background 

 

In the past, with non-networked machines and trusted operators, platform trust was only 

an issue for perhaps high-security government installations.   Even the advent of the 

Arpanet (predecessor of the internet) assumed friendly, trusted end-points.   In the 21
st
 

century with the planet interconnected and the movement of so much business to 

computers and computer networks, though, this safe world of computing cannot be 

assumed. 

 

As such, some problems to solve in the computing platform include: 

 

• Protection Against Malicious Code  
– This includes concerns for network-based Worms, patching to address 

flaws and vulnerabilities 

• Business Process Compliance  
– Regulatory requirements from EU Privacy, Sarbanes-Oxley, Basel II, 

HIPAA [HIPAA], GLB, Payment Card Industry (PCI) [PCI] 

This includes cases where end-user information, corporate data that could 

imperil a company (i.e., shareholder), HIPPA for medical documents 

• Internal/External Access and Data Protection 
– Secure provisioning of Infrastructure/Users 

– Managing access/identity across disparate applications 

 

So this taxonomy above describes the new legislation and an ideal list of concerns.      

 

These issues are making security a growing concern for IT.   The cost of attack is 

significant and can include downtime, regulatory, lost customers, and damage to the 

business‟s image.    As shown in the figure below, the industry is going through a shift in 

type of attackers and attacks, namely from social notoriety to targeted criminal activity 

with focus on stealth. 

 

Finally, virtualization and cloud computing have inherent security requirements, 

including abstraction of physical hardware and a multi-tenancy movement that implicitly 

requires audit and security.  
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Figure 1 Symantec data on threats 

 

Key point 
Security isn‟t hype, but a real market need. 

 

Summary 
This chapter has provided a brief introduction to some of the business problems and 

threats that will motivate the development of trusted platforms. 
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Security architecture and trust 

 

This section of the paper will provide an overview of trust, a security architecture, and a 

description of a series of goals.      

 

Trust overview 
We begin the discussion of trusted platforms with some background on “Trust.”   

Specifically, the definition of Trust 

 

 

 
Figure 2 Dictionary definition of 'Trust' 



 

 6 

 

 

• Trust 
– An entity can be trusted if it always behaves in the expected manner for 

the intended purpose  

• Measurement 
–  The process of obtaining the identity of an entity 

• Security 
–  “. . .

1
maintenance that ensure a state of inviolability from hostile acts or 

influences” 

 

In fact, trust is an amalgam of several elements of the platform that span the enterprise to 

consumer, including reliability, safety, confidentiality, integrity and availability. 

 

 
Figure 3 The elements of "Trust" 
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Where should the solution reside, given the “Problems to be solved”, and some of the 

capabilities like security, trust, and measurement to help effect the solution? 

 

In fact, the implementation of trust and security entail a security architecture that spans 

the entire system, starting at the base with hardware and spanning all of the way to the 

end-user application. 

 

The figure below shows all of the layers of a security architecture.   The “network” layer 

is broken out with a few examples, such as protocols (SSL, IPSec); this paper will not 

delve too deeply into this layer.   The “firmware” layer is highlighted to show that a 

single-layer of security is not sufficient. 

 

One goal of a security architecture is to provide trust. 

 

 
Figure 4 All layers of a security architecture 



 

 8 

In fact, the scope of this paper largely treats firmware.     Some description of hardware 

elements and interaction will be provided.   As such, the figure below highlights the area 

that this paper discusses in more depth. 

 
Figure 5 Layers examined in this paper 
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As seen in the figure above, all layers are important, but if don‟t have firmware/hardware 

assurance, you cannot have a security architecture.   As the logicians would say, it‟s 

„necessary but not sufficient‟ to have appropriate design in these layers.   And as will be 

described later, the layer of hardware and firmware provide a „root of trust‟ for the rest of 

the security architecture. 

 

So now that we have trust, security, measurement, and a layered picture of the security 

architecture, the goals of the security architecture and assets that are protected are as 

follows. 

 

The first security goal is „integrity,‟ and this entails the protection of content and 

information from unauthorized modification.    The next goal is „Authenticity‟, and this 

provides guarantee or assurance in the source of the code or data.    Another important 

goal is “Availability,” or the ability to ensure behavior and the liveness of system.   

Availability also protects from destruction or denial of access.   And finally, another goal 

is “Confidentiality,” or the protection of information from unauthorized access. 

 

Through the subsequent discussion of trusted platforms and UEFI, some of these integrity, 

authenticity and availability goals will be discussed in more details. 

 

It is outside the scope of this paper to describe confidentiality since this is typically a 

concern of higher-level applications, but errors in lower layers of the trusted platform 

may imperil this goal.  Specifically, this relates to the introduction of vulnerability via a 

flaw in integrity or authenticity implementations of a layer that wants to provide 

Confidentiality (say an „application‟) when the hardware or firmware or network 

underneath is errant. 

 

A final item that will be discussed in this paper includes reads on a final goal that spans 

all of the above, namely „assurance.‟   By „assurance‟ we mean having some guarantee on 

the correctness of an implementation.   And for this study, assurance will be treated in 

detail for the case when platform firmware and trusted computing hardware elements are 

the embodiment of the platform. 

 

And given the „trust‟ definition above, we see that these features are especially important 

in the enterprise, such as a high-end server, where reliability and safety goals are co-equal 

to the other concerns like integrity and confidentiality.   

 

Summary 
This chapter reviewed what is meant by trust, sample security architecture, and various 

security goals.    



 

 10 

 

Trusted Computing Elements 

 

This section of the paper will provide taxonomy of the terms and elements used in trusted 

computing.   

 

TPM and Trust 

In building out of the hardware layer of the security architecture, one problem with open 

platforms is that there hasn‟t been a location on the system to have a „root of trust.‟    The 

Trusted Platform Module (TPM) and the infrastructure around this component are an 

industry attempt to build a series of „roots of trust” in the platform. 

 

The maintenance and evolution of the capabilities of the TPM are managed through an 

industry standards body known as the Trusted Computing Group (TCG) [TCG].    The 

TCG members include systems manufacturers, TPM manufacturers, CPU & chipset 

vendors, operating system vendors, and other parties that contribute hardware and 

software elements into a trusted platform.    IBM includes one vendor that spans many of 

these categories.   Intel also participates in the TCG as CPU & chipset vendor. 

 

To begin, what is a TPM?    

A TPM is a “Trusted Platform Module”.   It features a series of protected regions and 

capabilities.     Typically, a TPM is built as a microcontroller with integrated 

flash/storage that is attached to the LPC bus on PC, but it can also be a virtual device or 

more deeply integrated in the platform chipset complex.    The TPM interacts with system 

through a host interface.   The TIS in TCG PC [TCG TIS] Client working group 

describes the memory-mapped I/O interfaces; the TIS is just one such interface.   The 

TPM Main specification [TPM Main Specification] describes the “ordinals” or the byte 

stream of commands that are sent into the TPM.    These commands are the required 

actions that a TPM must carry out in service of the host. 

 

Below is a picture of some of the specifications that describe the TPM and its integration 

into the platform. 
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Figure 6 Specification roadmap 

 

 

The interoperability of the Trusted Computing elements is managed through the Trusted 

Computing Group (TCG) and a series of specifications.   For purposes of this review, the 

TPM main specification, platform design guides, protection profiles, and the EFI 

collateral will be of interest, as highlighted above.    
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Figure 7 TPM overview 

 

The figure about shows an instance of a TPM diagrammatically.   Given the existence of 

the specifications mentioned earlier, multiple vendors can provide conformant instances 

of this technology with the ability to differentiate their implementations. 
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Below is a picture of the elements that are typically found within a TPM.    The protected 

execution and storage of the TPM allow for hosting the RSA asymmetric key pairs, such 

as the endorsement key (EK), the AIK (Attestation Identity Key), and SRK‟s (Storage 

Root Keys).   Recall that in RSA cryptography, the public key can be known to all, but 

the private key must be shrouded from users.   The TPM and its isolated execution can 

both host the key-pairs and keep the private RSA keys away from attacks/errant agents on 

the host.    In today‟s platforms without a TPM, only a custom Hardware Security 

Module (HSM) or other additional hardware can be used for hosting key-pairs.   But in 

these latter solutions, there is no guarantee on construction of platform, surety of the host 

interface, etc.    The Trusted Computing Group via design guides, protection profiles, 

conformance tests, etc., vies to both describe the requirements on the TPM and the 

binding into the platform in order to have a trusted building block (TBB).      

 

 
Figure 8 TPM block diagram 



 

 14 

 

What is a Trusted Building Block (TBB)? 

The TBB includes the components that make up the platform.   These can include the 

TPM, how the TPM is bound to the platform, flash with the system board firmware, 

portions of the firmware that must be trusted.   The TBB goes beyond TPM ordinals.   It 

leads into prescriptions on the construction of the physical platform.   As such, it is not 

just an issue at one layer of the stack. 

 

Summary 
This chapter reviewed a „hardware‟ layer element called a “TPM” and associated 

technology.   The latter will provide one building block for that hardware layer to help 

meet larger platform security and protection goals. 
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What is platform firmware/BIOS 

This section will describe one layer of the security architecture mentioned above: the 

„firmware.”  In fact, the trusted hardware elements listed above cannot be leveraged 

without firmware. 

 

What is a BIOS 
The term BIOS stands for „basic input/output system‟.  BIOS is a class of firmware that 

runs on the in-band processors or CPU‟s of a system in order to initialize the platform 

hardware complex and pass control to an operating system.    For purposes of the security 

architecture mentioned in the earlier chapter, it is the „firmware‟ layer. 

 

The original PC/XT had an 8kbyte BIOS that that initialized the system and passed 

control to DOS®.  This was 1982.   Since that time, the BIOS domain has evolved 

significantly, including the transition of the industry to the Unified Extensible Firmware 

Interface (UEFI). 

 

We will refer to the original BIOS as the “Conventional BIOS” and the UEFI-based boot 

code as “UEFI.”  Conventional BIOS and UEFI [UEFI Specification] based-systems 

must carry out several roles.   First, each has the concept of platform initialization.   This 

phase is the code that commences execution immediately after a platform restart (S3, S5, 

etc).   In a Conventional BIOS, this is a vendor-specific flow and construction, but is 

sometimes referred to as the „stackless assembly‟ or „boot-block code.‟  In UEFI, there is 

a separate set of standards referred to as the Platform Initialization (PI) standards [UEFI 

PI Specification].  In a PI-based platform initialization, the SEC and PEI phases 

commence this early execution. 

 

The temporal evolution of a UEFI PI-based boot is shown below. 
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Figure 9 UEFI PI boot flow 
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 Afterward, each platform needs to discover I/O buses and dispatch option ROM‟s from 

host-bus adapter cards, etc.     In conventional BIOS, this I/O enumeration happens in 

“POST” (power-on-self test).   There is no real standard for POST on a Conventional 

BIOS.  For UEFI PI-based firmware, though, this phase of execution occurs in DXE 

(Driver Execution Environment).     DXE also serves as the UEFI core for purposes of 

supporting UEFI-based operating systems.   

 

After BIOS POST and DXE, though, the „standard‟ part of the interface to the platform 

appears.   For a PC/AT BIOS, the „standard‟ includes the de facto int-callable interface 

(e.g., Int13h for disk, Int10h for video) that executes in 16-bit real mode on the x86 

architecture.   For UEFI, this option ROM and loader interoperability includes the UEFI 

boot services and protocols (e.g., EFI_BLOCK_IO_PROTOCOL as analog to BIOS 

int13h), and is described by the UEFI specification.     It is during this phase of execution 

where 3
rd

 party content can appear from disk or adapters that did not necessarily ship 

with the platform manufacturer‟s (PM) system board. 

 

This taxonomy above is critical because the transition from an execution regime provided 

by the PM into a space where 3
rd

 party codes can run has implications on the construction 

of a trusted platform. 

 

 

 
Figure 10 High-level BIOS flow 
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The figure above shows the generic BIOS initialization flow.   This flow includes the 

initialization of the platform CPU, memory, and I/O devices during POST.   The POST 

flow again is analogous to the DXE flow in the earlier figure. 

 

More details on the UEFI PI flow will be treated in the „best-practices‟ chapter. 

 

Summary 
The platform firmware represents a mandatory layer in the security architecture we 

introduced earlier.    As such, specific activities around interactions with trusted hardware, 

construction, and deployment of firmware will be covered in the following chapters. 

 



 

 19 

 

Firmware and trusted computing  

The preceding chapter provided a brief description of the platform firmware and its role 

in initializing the system.    The firmware and TPM, which we described individually 

earlier, come together with the S-CRTM. 

 

What is a S-CRTM 
A S-CRTM is a ”static core root of trust for measurement.”   The S-CRTM is the portion 

of the platform firmware that must be „implicitly trusted.‟   The S-CRTM makes the first 

measurements, starts TPM, and detects physical presence per the TCG privacy model. 

 

And it is where the S-CRTM portion of the TBB intersects with the platform firmware 

and other roots-of-trust in the platform.   “S-CRTM,” “CRTM,” and “SRTM” will be 

used interchangeably later in the section. 

 

Following is a quick overview to clarify the roots-of-trust in the platform and which 

business entity delivers them. 

 

Taxonomy of terms in the platform: 

 RTM 

o Generic term for “Root of Trust for Measurement” 

o SRTM is the static root of trust for measurement (SRTM) – CRTM + 

unbreakable measurement chain to OS 

o DRTM is the dynamic root of trust for measurement (DRTM) 

 CRTM 

o Static CRTM (S-CRTM) or “CRTM”.  Portion of platform firmware that 

must be implicitly trusted. 

 RTR 

o Root of trust for Reporting 

o These are the Platform Configuration Registers (PCR‟s) in the TPM 

o 20-byte non-resettable registers to store the „state‟ or „measurements‟ of 

code + data 

o Typically SHA1 (new info || former PCR value), where “||” is the 

catenation of data 

 RTS 

o Root of trust for storage 

o Endorsement key (EK) – unique per TPM 

o Storage root keys (SRKs) – use by OS and others to build key hierarchies 

 TPM Owner  

o Applies the authentication value 

o Several commands are „owner authorized‟ 

 SRTM 

o Static root of trust for measurement 
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o CRTM (e.g.-CRTM) + platform firmware measuring all code and data 

prior to boot 

o Records information into non-resettable or “static” PCR‟s (0-15); these 

static PCR‟s zeroed only across platform reset 

o Described by TCG BIOS and EFI specifications 

 DRTM 

o Dynamic root of trust for measurement 

o Initiative the measurement later in boot.   Includes „resettable‟ PCR‟s 16 

and above; these „resettable‟ PCR‟s zeroed upon initiation of the DRTM 

launch 

 Physical presence 

o Administrative model of the TPM.   Assertion by operator of presence in 

order to perform privacy or administrative activities with the TPM. 

 

In general, a hardware instantiation of the Trusted Platform Module (TPM) is a passive 

hardware device on the system board.  It serves as the Root of Trust for Storage (RTS) 

and Root of Trust for Reporting (RTR).  The former is the use of the Storage Root Key 

(SRK) and the Platform Configuration Registers (PCR‟s).    

 

The figure below shows the synthesis of the various roots in the platform.  

 

 
Figure 11  Synthesis of firmware and TPM 
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The active agent on the platform is the Root of Trust for Measurement (RTM).   The 

RTM can be either Static or Dynamic (SRTM versus DRTM, respectively).   The SRTM, 

on the other hand, entails trust chain from the platform reset vector going forward. 

 

The definition of the SRTM for EFI is defined in [TCG EFI Protocol] and [TCG EFI 

Platform].     The flow of the SRTM into the operating system is shown in the figure 

below. 

 

 

 
Figure 12 Boot flow 

 

 

 

There need to be UEFI API‟s available so that the UEFI OS loader can continue to 

measure the operating system kernel, pass commands to the TPM to possibly unseal a 

secret, and perform other TPM actions prior to the availability of the OS TPM driver.  In 

addition, this API can be installed at the beginning of DXE to enable measurement of the 

DXE and UEFI images. 

 

The figure below shows where the UEFI TCG API‟s would appear relative to the other 

interfaces. 
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Figure 13 Layering of API's in UEFI system 

 

 

The UEFI specifications are cross-listed in the TCG PC and Server Working Groups such 

that both consumer and enterprise-class operating systems can participate in this boot 

flow behavior.    
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Figure 14 Measured objects in UEFI 

 

 

The UEFI TCG Platform specification describes which objects to measure in an UEFI 

System, such as the images, on-disk data structures, UEFI variables, etc.   The figure 

above shows which objects in a UEFI system correspond to measures in PCR‟s. 
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Figure 15 Measurement and temporal boot flow 

 

 

Prior to the “EFI Phase” of platform execution, the Framework & PIWG describe the PEI 

and DXE phases.  Therein, the CRTM is mapped to the PEI phase and what is thought of 

as BIOS POST is mapped to DXE.   There are interfaces in PEI (namely, the PEIM-to-

PEIM interface, or “PPI”) to allow for fine grain measurement in that phase of execution, 

too.     

 

The figure above shows one possible PEI-based CRTM and the flow into the operating 

system.       

 

What is the point of measurements? 

The process of measurements records the state of the platform, for both executable code 

and data hashes, into the TPM‟s platform configuration registers (PCR‟s).  These PCR‟s 

are write-only and cleared upon a platform reset (at least the static PCR‟s for SRTM).   

The PCR‟s reflect the platform state.   They are used such that software, when installed 

upon the platform, can “Seal” some information to the platform.   A seal is like an 

encryption that also includes PCR‟s.   There is a corresponding “Unseal” operation, 

which is a decryption that also uses the PCR‟s.    

 

What this practically means is that if the state of the platform changes between the 

installation of some software (and the Seal operation) and successive invocations of 

software on later restarts (and the use of Unseal operation), unauthorized changes to the 

platform in the interim will be detected (i.e., PCR‟s changed).    

 

This is sort of the Resurrecting Duckling security model wherein the initial state of the 

platform (i.e., PCR values upon installing application) is considered safe or acceptable.    

 

UEFI offers an opportunity here.   PI and UEFI have specification-based components 

written in a high-level language (e.g., C).   The software development lifecycle (SDL) for 
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drivers and other system software can be applied, as can static analysis tools (e.g., 

Klockwork®, Coverity®, etc).  Later in the paper we‟ll talk about additional practices to 

complement the SDL that address domain-specific issues with platform firmware. 
 

With all these elements of security and protections in place how the CRTM is updated 

becomes critical and much more challenging.  Since the CRTM is the root, and is itself 

inherently trusted, it must be a very controlled and secure process.  The TCG describes 

CRTM maintenance in the Trusted Building Block (TBB) protection profile.  Either the 

CRTM is immutable, or never changed in the field, or appropriate cryptographic 

techniques need to be employed in order to update the CRTM.      

 

Regarding the cryptographic-based update, the figure below shows a possible 

implementation where the firmware volume (FV) update is enveloped using an RSA-

2048/SHA-256-based update [RSA][SHA].   This is just one possible UEFI PI 

implementation that leverages the UEFI PI-based firmware volume construct and the 

WIN_CERT that can be found in the UEFI2.0 specification.    

 
Figure 16 Firmware volume update 

 

As noted above, a signed capsule is one implementation path.  The system flash is not 

directly updated by a flash utility but instead the CRTM update capsule is stored in a 

staging area.  The next time the CRTM gains control of the system (at reset), it will check 

for any pending updates.  If updates are found, they will be validated and then 

cryptographically verified.  If they are valid, the CRTM update can be applied.  It‟s 

important to note that when validating the update this all must be done by using only 

CRTM code and data.  Code or data outside the CRTM cannot be trusted until verified.   

 

Summary 
This chapter describes the various roots-of-trust in the platform, how the platform 

firmware as the RTM leverages the TPM via measurements and the SRTM flow.   And 

finally, the deployment criteria of a CRTM is reviewed, with due consideration in the 

construction of the firmware CRTM and updates.     
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Operating System usage of SRTM 

 

There are various use-cases for a trusted platform.   The TCG describes combing 

network-access control scenarios based upon trusted platforms in their Trusted Network 

Connection (TNC)-based specifications. 

 

But this portion of the paper will highlight a specific use-case of the SRTM and a 

shipping operating system feature. 

 

OS usages of SRTM 

One of the uses of the static measurement includes the Microsoft Server 2008® 

BitLocker ® Feature.  This uses the loader, in tandem with the TPM, and then encrypts 

the full disk volume. 

 

 
Figure 17 BitLocker EFI SRTM 

 

This capability is a class of behavior called “Full Disk Encryption” (FDE).    Concerns 

around data mobility, such as a server disk array being stolen, all the way down to a 

laptop abandoned in a Taxi, could entail a data breach.   In fact, earlier discussions in the 

“Problems to solve” section included compliance standards like Sarbanes-Oxley and 
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HIPAA which are driving enterprises to deploy this type of capability. 

 

The TPM and an SRTM-capable BIOS are enablers of this operating system feature. 

 

Key points 

This is a scenario that leverages SRTM capabilities. 

 

Summary 
This brief section was intended to highlight the fact that there are commercially available 

operating system features that leverage trusted platforms.
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Platform Perspective 

This section will provide an example of a real-world system that supports many of the 

elements of trusted hardware, UEFI firmware, and the OS use-case described earlier. 

 

IBM System 
IBM has integrated many of the features in the preceding section to implement a secure 

platform.    

 

The IBM firmware adheres to the UEFI Framework/PI design, and an example breakout 

is shown below. 

 

 
Figure 18 System firmware layering 
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This layering allows for support of both UEFI operating systems via a DXE core and 

support of CPU and chipsets modules via PEIM‟s and DXE driver drivers. 

 

IBM started shipping trusted computing elements several generations ago and is 

extending the capabilities across their product lines. 

 

The figure below shows a small set of the trusted platforms that includes both UEFI 

firmware and trusted hardware elements. 

 

 
Figure 19 IBM trusted platform portfolio 

 

 

 

By leveraging UEFI to build trusted platforms, more features can be readily added to the 

platform versus the space and size limitations of legacy BIOS.  

 

 

Summary 

This chapter shows that the promise of trusted computing is delivered via IBM systems 

based upon industry standards and Intel hardware. 
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Best Practices for Construction 

This section gives a background on platform hardware and firmware construction 

practices for a trusted platform.   It treats the earlier issue of “assurance” in the overview 

with more details.   

 

Background of practices 

 

Many of these prescriptions covered below are already treated in various TCG documents 

and design guides.   The intent of this section is to provide a platform and UEFI PI-

focused summary of rules and practices. 

 

Recall the earlier section of the security architecture with hardware and firmware at the 

lowest layer.   In addition to the having appropriately specified components and designs, 

„how‟ the elements are integrated and build is just as important.    A review of some 

hardware construction guidelines, along with firmware best practices, will be included. 

 

Platform Hardware 
Recall that the lowest layer of the security architecture in the early chapter is hardware, as 

shown in the figure below.     

 

 
Figure 20 Hardware Layer of security architecture 
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The hardware best practices treated below are focused at the system board platform 

manufacturer.    Assurance around chipsets, CPU‟s, I/O devices, and other elements are 

not treated here. 

 

Some of the platform hardware platform best practices include the following:  

 

1. CRTM flash protection: Hardware must be designed to have a robust flash 

protection mechanism.  Locking must not be controlled by any untrusted 

programmable entities in the system including non-host processor. Also, once 

locked within CRTM code, it must not be un-lockable without going through a 

system reset .  

 

2. Physical Presence: Physical Presence (PP) hardware must be designed such a way 

that this pin is not changeable by any un-trusted programmable entity.  

 

3. Reset: System reset functionality must be designed such a way that TPM gets 

reset whenever there is any kind of system reset and also hardware needs to make 

sure that there is no path available to manipulate reset vector in the system . 

 

UEFI Firmware 
Above the hardware layer of the security architecture is the firmware, as shown in the 

figure below. 

 

 
Figure 21 Firmware layer of the security architecture 
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Since there are several code-base implementations of platform firmware today and 

possibly in the future, this discussion will be held in the context of the Platform 

Initialization (PI) standards and some representative codebases thereof. 

 

As a backgrounder, Platform Initialization Working Group of UEFI Forum has the 

following properties: 

– Delivering the Platform Initialization Architecture Specifications 

– Based on Intel PEI and DXE specs 

– Independent of UEFI 2.0 Specification 

– PI Architecture platforms can still boot today‟s OS‟s 

Ownership: AMD, AMI, Apple, Dell, HP, IBM, Insyde, Intel, Lenovo, Microsoft, 

Phoenix own the specifications 

Goal: Allow silicon vendors who create “reference code” today to package this reference 

code as modules that snap-into PI Architecture firmware implementations 

 

The figure below speaks more to the PI scope. 

 
Figure 22 UEFI PI 
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UEFI & PI specifications only describe normative material around interface definition and 

mechanism, but No informative content, such as „why‟, „how‟.    Intent of latter to be purview of 

design guides.     

 

More information on the UEFI PI Specifications can be found at [UEFI PI Specification]. 

 

In contrast to monolithic BIOS‟s, the UEFI PI allows hardware agility via software extensibility 

by exposing a driver model, such as dependency-expression based PEI Modules (PEIM‟s) and 

DXE drivers.  Extensibility points can serve as a point of attack for malware. This type of 

malware is essentially undetectable by OS hosted protection technologies, such as anti-virus since 

it executes well before the OS.  Consequently, the security integrity foundation of the pre-OS 

boot environment provided by UEFI and other pre-OS extensibility must be solid, while still 

providing enough flexibility to support hardware agility.  

 

The PI phase is intended to only be extensible by the platform manufacturer (PM), not third party 

(in contrast to UEFI and its option ROM/loader/driver model).   The installation and behavior of 

code in this early PI flow is said to act under the authority of the Platform Manufacturer; this will 

be referred to as “PM_AUTH” below.      

 

Preservation of this PI as PM-extensible-only-intent in both construction and survivability in the 

field is a goal of the system design and required to have appropriate assurance for earlier-

described instances of SRTM, CRTM, etc. 

 

Below is a figure describing the UEFI PI boot-flow, including annotation of the PM-extensible-

only PI code and the 3
rd

 party extensible UEFI. 
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Figure 23 UEFI PI Boot flow 

 

Best practices of PI 

Regarding the construction of UEFI PI code, there are a series of best practices that 

should be followed.  The summary of the best practices list is as follows: 
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1. HW misconfiguration:   

 Appropriate set locks and other hardware configuration should be set by the 

PM-only PI code prior to running 3
rd

 party code, such as UEFI drivers or 

operating system loaders 

2. Callouts 

 Don‟t call out from PM_AUTH PI code to non-PM_AUTH code 

 Measure and code before loading 

3. Interface correctness 

Pass compliance tests 

      Check & validate input, especially from non-PI PM_AUTH into PI code 

4. Flash protection and update security 

Appropriate update of PI and CRTM – either immutable or cryptographic update 

5. Denial of service  

Platform recovery/update strategy 

 

 

These practices do not remove the need for threat-model [Threat] and other activities to 

ensure robustness of the platform.   But the above items will allow for the business intent 

of the UEFI PI specifications, such as PM_AUTH, to be achieved in deployment of 

actual systems. 

 

Summary 

In addition to industry standards adherence, it is also important to follow some 

implementation best practices to gain assurance in the construction of the hardware and 

firmware layers of the security architecture. 
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Evolution of platform trust 

This section will talk about several emergent technologies that build upon the earlier 

trusted computing elements and firmware assurance. 

 

These technologies will span evolution in both the UEFI firmware and also the root-of-

trust for measurement, namely going from a static root-of-trust to a dynamic one, or 

SRTM going into DRTM. 

 

UEFI Futures 
To begin, the UEFI evolution described below appear as elements of the UEFI main 

specification in version 2.2 [UEFI Specification].  These features entail updates to the 

boot behavior and the features briefly treated will include image verification, networking 

enhancements such as IPSec, and user identification. 

 

The figure below shows where in the stack the emergent UEFI features described in this 

chapter exist, namely in the UEFI Services and boot manager .     

 

 
Figure 24 UEFI stack 
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UEFI2.2 executable verification 

 

The first feature from UEFI2.2 to discuss is driver signing or executable verification.    

 

The figure below provides some details on the capabilities:  

 

 
Figure 25 UEFI 2.2 Driver signing overview 

 

One evolution beyond the SRTM described in earlier chapters, that UEFI can provide is 

“verification.”   Recall that the SRTM records the state of the code and data in the 

platform such that a later entity may assess the measurements.   For verification, or 

enforcement, of some policy, the UEFI firmware can act as a „root-of-trust-for-

enforcement‟ (RTE) or „root-of-trust-for-verification‟ (RTV) wherein the boot process 

can change as part of policy.    This policy can include the UEFI2.2 image verification 

using Authenticode-signed images [Authenticode], for example.     

 

Below shows the steps necessary for signing of UEFI images.    The signing can include 

RSA asymmetric encryption [RSA] and the hash function a member of the security hash 
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algorithm [SHA] family. 

 
Figure 26 Signing of UEFI images 

 

This preparation would happen at the manufacturer facility or could be facilitated by a 3
rd

 

party, such as VeriSign ® Certificate Authority (CA). 
 

Once the signed images are deployed in the field, whether loaded across the network, 

from a host-bus adapter card, or via the UEFI system partition, below is the behavior of 

the UEFI 2.2 firmware to verify the image integrity. 
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Figure 27 Verification of UEFI images 

 

The combination of robust UEFI implements and interoperable trust infrastructure will 

allow for evolving the extensibility of UEFI in a safe, robust fashion. 

 

UEFI2.2 IPsec/Network stack 

 

Another element that appears in UEFI2.2 entails additional network security, including 

IPsec support. 

 

Trusted hardware like the TPM can be used to help store the IPsec credentials, but to the 

stronger, assurance around the UEFI firmware implementation of the IPsec cryptography 

and the networking code will need to follow the guidelines in the preceding chapter. 

IPSec can be used for platform network boot to harden scenarios such as ISCSI-based 

provisioning. 

 

A figure showing the EFI IPsec implementation using the UEFI2.2 IPsec protocol and 

IPV6 network stack, including a pre-deployed security association (SA), can be seen 
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below. 

 
Figure 28 UEFI 2.2 IPsec 

 

IPsec in the platform will allow for performing both an IPV4 and IPV6-based ISCSI boot 

and provisioning, for example. 

 

The figure below shows an iSCSI layering on top of the UEFI2.2 network stack, for 

example. 
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Figure 29 iSCSI application with the UEFI network stack 

 

Beyond the IP6 and IPsec UEFI interfaces, the wire-protocol for network booting has 

commensurate evolution to the UEFI API‟s.   Specifically, in the DHCPv6 extensions for 

IPV6 network booting [DHCP6 Net Boot], the boot file information is sent as a Uniform 

Resource Locator (URL).   As such, the UEFI client machine and the boot server can 

negotiate various types of downloads, including TFTP, HTTP, or ISCS.    This allows the 

network capabilities to track the needs of the market and the machine firmware 

capabilities. 

 

UEFI 2.2 user identification 

 

A final ingredient in UEFI2.2 includes the user identity support.   This is infrastructure 

that allows for loading drivers from token vendors to abstract authentication of the user, 

including many factors, and a policy engine to assign rights to certain users.   This can 

include limiting service access for certain users.    
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A figure showing this capability can be seen below. 

 
Figure 30 UEFI 2.2 User identity 

 

Implementation of these UEFI feature would also build upon and require the 

assurance/best practices in firmware discussed earlier. 

 

More information on the UEFI-based features can be found at [UEFI Main Specification]. 

 

Hardware evolution:   SRTM-to-DRTM 
 

As a final element getting introduced into the platform going forward is the dynamic root 

of trust for measurement, or “D-RTM.”   The D-RTM provides platform hardware 

capabilities to support a MLE or „measured launch environment.‟   An S-RTM and D-

RTM feature set can exist on the same platform, or each feature can exist independently.     



 

 43 

The figure below compares the two RTM‟s and their temporal evolution and features. 

 
Figure 31 DRTM boot flow 

 

A DRTM implementation can also include a root-of-trust for verification (RTV), too. 

 

More information on Intel‟s D-RTM implementation can be found in the following book 

[Secure Computing Book]. 

 

Summary 

This chapter shows that the earlier investment in trusted platforms can be preserved while 

providing additional capabilities.   At the same time, the best practices described earlier 

are applicable for the build-out of these new features, too.
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Conclusion 

This paper has introduced a set of security problems in the industry.    To address these 

concerns, a set of trust concepts with associated security architecture were defined.   In 

order to meet the goals of the architecture definition, though, the required roots-of-trust in 

the hardware and firmware were reviewed.   These roots include TCG-based hardware 

and UEFI-based firmware.    

 

These features can provide additional end-use features, such as more observable behavior, 

disk encryption, malware resistance, etc.   But in order to meet the needs of a trusted 

robust platform, care and due consideration must be applied during construction of the 

constituent firmware elements. 

 

The combination of UEFI and TCG-based technologies offers a technology platform to 

deploy richer interoperability and greater trust in the boot. 

 

In addition to the having these various technologies in hand, the importance of how they 

are built and deployed was also reviewed.    IBM System-X technology, including but not 

limited to support for Intel hardware and industry standards, is one such vehicle to deliver 

the security architecture. 

 

Beyond delivering end-user value today, investments in trusted computing platforms and 

design practice also allows for evolution of platform trust. 
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